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Spatial steady-state flows of an incompressible fluid in the boundary layers near a free surface with 

specified surface tangential stresses are investigated. Under conditions of axial symmetry and assuming 
a plane free boundary, self-similar solutions of the tbrec-dimensional equations of the boundary layer 

are constructed numerically. The asymptotic solutions for small and large values of the load are 

obtained. 

1. CONSIDER the non-linear steady-state problem of the flow of an incompressible fluid in an 
unbounded region D under the action of a system of tangential stresses T(x, y, z) specified at 
the a priori unknown free boundary r, for the system of Navier-Stokes equations, with low 
viscosity 

(v.V)v=-p-‘Vp+vAv+g, divv=O (1.1) 

p=2vpnrIn+o(k, +k,)+p*, (x,y,Z)Er 

2vp[I’In -(nlIn)n]=T, v-n =0 (x,y,z)~r (1.2) 

Here v=(2),, IJ,, u,):g=ge,, e, =(O, 0, 1) is the unit vector of the z axis, g is the 
acceleration due to gravity, p is the fluid density, n is the unit vector of the outward normal to 
I’, II is the deformation rate tensor, I$ and k, are the principal curvatures of the surface r (a 
priori unknown), c is the surface tension, and p. and T = (T,, T2) are specified normal and 
tangential stresses at the free surface r, the latter may be caused, for example, by wind. The 
velocity field is assumed to vanish at infinity. 

We know the empirical equation [l] 

T = c,p,U,IU,I 0.3) 

where pa is the density of air, cD is an empirical coefficient of the order of 2x10m3, and V, is the air 

velocity in the air flow at a distance from the fluid (water) surface. Formula (1.3) is obtained from the 

well-known Prandtl formula for the tangential stresses for free turbulence T = pc6 IV,, -V,,, I dV I dy = 

pc I V, -V,,, I (V, -Cl,), where 6 is the thickness of the boundary layer in the air, and V,,, is the air velocity 

at the free surface of the fluid. 
Taking into account the fact that V,,, =sV. we obtain the quadratic dependence of the friction on the 

velocity V, (1.3) (we note that V, lV, = O(lO-*) [l]). 
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In an ideal fluid there are no surface tangential stresses, so that the boundary conditions for T are not 
specified. When the fluid viscosity is small, the boundary layer is formed near the free surface. This layer 
compensates for the discrepancy caused by the tangential stresses. We note the results in [24] of a study 
of the equations of the steady boundary layer near the free surface for specified surface tangential stresses 
caused by heating of the boundaty (T = Vro, V, = V -(n.V)n is the gradient along the surface I, and (T is 
the known varying surface tension). The solvability of the plane problem of the extension of the boundary 
layer near r was proved in [3]. 

We will reduce problem (l.l), (1.2) to dimensionless form. Let L and T. be the characteristic 
scales of the length and tangential stress. The dimensionless pressure p’ is defined by the 
relation p = T,p’-pgz. We will denote the characteristic velocity scale by U. Changing to 
dimensionless variables in the Navier-Stokes equations and multiplying them by LU2 we find 
that the coefficient of the Laplace operator equals v/(UL). We will denote it by Ed. Making the 
stretching transformation in the boundary layer .and equating the orders of magnitude of the 
viscous and inertial terms we find that the thickness of the boundary layer is of the order of E. 
Next we change to dimensionless parameters in the boundary conditions for the tangential 
stresses and take into account the stretching transformation. Equating the orders of the 
principal terms in these conditions we obtain the relation T. =pvUI(cL). From this we find the 
characteristic scale of the velocity in the boundary layer U = (LT,2p-2v-1)1’3. We now represent 
the small parameter E in the form E = (~v~L-~T-~)“~. Small E corresponds to a small value of the 
coefficient of viscosity. We note that the relation E - v~‘~X-:-“~ has been obtained [2] for the 
Marangoni boundary layers (where we should set T = A I q I), A is the scale of the temperature 
gradient, and o, is the known coefficient in the relation o = o,- lo, I (6-Q, 6 is the 
temperature). 

The asymptotic expansions of the solution,of problem (1.1) (1.2) as E + 0 are constructed in 
the form 

v-bo+E(h,+v,)+... 

(1.4) 

Here t = I;(x, y) is the equation of the free boundary, which is a priori unknown. 
Let Q. be the region of the boundary layer. Then h,, qk will be functions of the type 

representing the solutions of the boundary-layer problem in the region Dr. The functions v1 
and pl which describe non-viscous flow and satisfy Euler’s equations, will determine the 
solution of the problem outside the region D,.. 

2. Let us formulate the problem for the principal terms h, and q,, of the asymptotic form 
(1.4) which determine the flow in the boundary-layer region. We introduce the local 
orthogonal coordinates 5, cp, 8, near the surface F, where 5 is the distance between the point 
N(x, y, z) and the surface F, and cp, 0 are the curvilinear coordinates on F of the reference point 
of the normal dropped from the point IV. Using the terminology of [5] we apply the second 
(internal) iterative process to (1.1) and (1.2). Let h*, tg,, hSk be the components of the vector 
h, in the local coordinates. We substitute (1.4) into (1.1) and (1.2) introduce the stretching 
transformation s=~/E and expand v1 in a Taylor series in powers of 5. Equating the 
coefficients of E-’ , co to zero we obtain that %. = 0, and A,, ho, I+, satisfy the dimensionless 
equations of the boundary layer which are identical with the Prandtl equations (note that the 
boundary-layer thickness is of the order of v”’ near the solid wall and v2’3 near the free 
boundary, in this case) 

$0 gP’ $0 - 
ahIp0 

a(p 
+ 8S1h30 - ae 

ah30 ++lo - 
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Thus, we have the following boundary conditions at the free surface and at infinity 

ah,, I as = -TV, abo I as = -T, 

wtl=o, (s=O); l+$o=h@o=o (s=w) 

Here gv, g, are the Lame coefficients of the surface, 6= g,g,. The higher-order 
approximations correspond the linear boundary-value problems, which are not discussed here. 
Below only the first a~roximation is constructed. 

The principal term in the asymptotic expansion (1.4) for the pressure is obtained in the form 

40 = -kl?h;ods-k, jh&fs 
s 5 

The boundary-value problem for the functions v,, J+, co which determine the flow outside 
the boundary layer and the asymptotic form of the free boundary is obtained by applying the 
first (external) iterative process 151 to system (l.l), (1.2). The equation of the surface I& 
(z = &) is obtained, 
dimensional form 

apart-from i~~n~tesi~als of higher order, by integrating the relation in the 

b(kto+k20)+k,0;h;ods+k, j$ods=pgz+p, 
0 0 

(2.2) 

where kIo, kzO are the principal curvatures of the surface T”. 
The non-viscous flow outside the boundary layer is determined by solving the boundary- 

value probIem 

(v, * VP, = -V;o,, div v, = 0 

V’,~ = $J+aa ’ Vl =o (x2+y2+z2=oo) 

The system obtained allows the potential flow of a fIuid. Denoting the flow potential 
(v* = V@) by 0, we obtain the Neumann problem with respect to Q, 

The results of a determination of the free boundary from formula (2.2) were discussed in [4]. 
We note that in the plane and axisymmetric cases Eq. (2.2) can be simplified considerably. For 
example, in the plane problem we assume &,, = k2 = To = 0, g, = I, integrate the first equation in 
(2.1) with respect to s over the semi-axis [0, -1, integrate by parts, take into account the 
boundary conditions and integrate the resulting expression with respect to ‘p. As a result, we 
obtain 

jhiods = 1 T,&,dQ + 7 f; (s)ds 
0 90 0 

(2.3) 

Here f,(s) = h,(s, cpo) is the velocity profile in the boundary layer in the cross-section cp = tpO. 
We note that it is convenient to choose (pO, for which the value of & is known. Substituting 
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(2.3) into relation (2.2) we obtain 

k,,(o+ i T,g,d~+JI,z(s)ds)=Pgz+P* (2.4) 
Qo 0 

If there is no tangential load (T, = fo = 0), we obtain from Eq. (2.4) the well-known equation 
of the free boundary of an ideal fluid at rest kloo = pgz+p.. 

Let us determine the form of the free surface in the case when the tangential and normal 
stresses acting on it are specified. We write Eq. (2.4) in Cartesian coordinates 

The function &., vanishes at infinity. We integrate Eq. (2.5) numerically for specified values 
of T, and p,, for example, for symmetric loads p. = exp(-x2), T, = hxexp(-x2) and non- 
symmetric loads p. = -exp[4(1- 2x2)], T, = U(x) (here 6(x) is the delta-function). For TV = 0 
the free boundary is a bowl or a cusp. When the amplitude h of the tangential load increases, 
the depth of the bowl and the height of the cusp decrease and tend to zero for large values of h, 
i.e. when the tangential stresses smooth out the free surface. 

3. Let us consider the problem of a three-dimensional boundary layer near a free surface. 
We will assume that p, = 0. Then the free boundary equation (2.2) has the solution t = 0, 
k,, = k,, = 0, i.e. if there are no surface normal stresses at the free boundary this free surface 
may be a plane up to O(E). Next we consider the case of the plane free surface at which the 
tangential load is specified, whose comjlonents are 

T,. = -h,rn, T, = -vn 

Here r, 8, t are cylindrical coordinates. It is convenient to choose the minus sign, so that in 
view of the vector formula (1.3) the components T, and T, have the same direction as the 
corresponding components of the velocity vector U, and can have any sign. The exponential 
load can be caused by the wind with velocity distribution I U, I = c(P”‘~ in (1.3). 

Assuming the fluid flow to be axisymmetric we set ho = ho(z/&, r). The system of boundary 
layer equations (2.1) in cylindrical coordinates cp = r, g, = 1, g, = r has the self-similar solution 

h r0 =r (2n+')'31;;(~,), be0 = #2n+1)'3Gl(~1) 

H,, = r(n-1)‘3H,(SI), s, = Zr(n-1)‘3 / E 

Taking into account the fact that the functions (3.1) are independent of 
find that system (2.1) is invariant under the replacement of the functions 
by h,, -ho, H,, T,, -T,. Thus we restrict ourselves to the case when 
change of variables 

(3.1) 

the coordinate 0, we 
h,, heo, H,,, Tp TB 
zz=O. We make the 

In order to determine the functions F, G and H we substitute (3.1) into Eq. (2.1) and obtain 
the boundary-value problem (the prime denotes a derivative with respect to II) 

F”_+.G’ _2n+lF2-HF’+I-nqF&0 
3 3 

G”_HG’_%i!+4G’+1-qFG’=() 
3 3 

(3.2) 
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H,+2n+4F+n-l 
-qF’=O 

3 3 

G’(0) = 1, F’(0) = 1, H(0) = F(w) = G(w) = 0 

For n = 1, problem (3.2) is distinguished from the well-known problem for the boundary 
layer near a disc rotating about an axis perpendicular to its plane by the boundary conditions 
(the fluid far from the disc is at rest). In the disc problem, the functions F(0) and G(0) are 
specified at s = 0, while in problem (3.2) the derivatives F’(O), G’(0) are specified. 

System (3.2) was integrated numerically for various values of n and h. For h = 0 the 
tangential load simulates a tornado, and for h#O the radial tangential stresses are super- 
imposed on the tornado. The parameter h takes positive as well as negative values depending 
on whether the load radial component is directed towards or away from the centre of the 
tornado. 

Figure 1 shows the dependence of the functions F(0) and G(0) (proportional to the radial 
and peripheral components of the velocity at the free boundary) on the parameter n. Curves 1 
and 2 are plots of the functions F(0) and -G(O) for h = 0. When the parameter n increases the 
magnitudes of the radial and peripheral components of the velocity decrease. 

In Fig. 2 curves l-3 show the dependence of the functions F(O), G(0) and F(O)IG(O) on h for 
n = 2. Both the functions F(0) and G(0) decrease monotonically when h increases and tend to 
--oo as 1+ +oo. The ratio F(O)IG(O) determines the tangent of the angle between the velocity 
vector at the free boundary and the peripheral direction. This angle varies from -90” (a = --) 
up to 23.06” as ;Z + +=. Unlike the disc problem, all the components of the velocity (3.1) 
depend monotonically on the s-coordinate for n = 1, n = 2 and hs 0. A non-monotonic 
dependence of F on s is only found for positive values of 1. 

We quote the asymptotic solutions of system (3.2) for ;Z+-. We introduce the new 
variable t = (-h)“‘q and represent the functions F, G and H in the form of expansions 

F = (-h)‘fo(t)+.... G =(-k)-H&,(‘)+..., If -d%,(f)+... 

The principal terms fo, g,, h, are found by solving the boundary-value problem 

(3.3) 

FIG. 1. FIG.2 
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Calculations show that fo(0) = 1.0564, g,(O) = -0.7763 and h(w) = -1.4705 for IZ = 0. When IZ 
increases, the values of fo(0) and Ig,,(O) I decrease monotonically. The function f&) decreases 
monotonically, and go(r) increases as t increases on the semi-axis [0, -) for fixed n. We will 

give formulae for calculating the velocity at the free boundary for IZ = 2 

F(0) - 0.8052(-5)‘5+..., G(0) - -Q-6833(-++... (h + --) 

The dashed lines in Fig. 2 show the asymptotic solution as L + --DO. 
The asymptotic solution of system (3.2) for a + + 00 is constructed from the formulae 

F - &(q,)+ . . . . G -kg&)+ . . . . H - hHh(ql)+ . . . . ql = A$ 

The functions f, g and h are found from the boundary-value problem which only differs from 
(3.3) by the extra term -g2 added to the right-hand side of the first equation and the boundary 
conditions for the derivatives replaced by f’(0) = 1 and g’(0) = 0. 

For n = 2 we quote the numerical values f(0) = -0.4768, g(0) = -1.1202. The function f(0) 
increases monotonically as the parameter n increases and reaches a value of -0.3396 at n = 10, 
and the function g(0) falls monotonically to -1.3510 at n= 10. On the semi-axis [0, -) the 
function g(qJ increases monotonically while f and h have one extremum each. We note that 
the functions f, g, h define the solution of the problem for the three-dimensional boundary 
layer near the free boundary when the peripheral component T, of the tangential load vanishes 
and its radial component is directed towards the centre of the tornado T, c 0. In the case of 
T, >O the boundary layer is two dimensional: g=h,, =0 (the system has a solution if 
f’(0) = -1). 

We will consider the three-dimensional flow, caused by the tangential load, in the boundary 
layer near a plane free boundary in the case when, unlike the problem considered above, the 
fluid rotates at infinity as a solid, with angular velocity o: u,, = u,, = 0, z),~ = or, p. = XwZr2 + 
c(z + 4). The velocities in the boundary layer and in the external flow are of the same order, 
so the asymptotic expansions, unlike (1.4), should be constructed in the form 

v-h,+v,+&(hl+vl)+... 

P-Q~+~,+E(~~+P,)+.... ‘i.=O(d 

Let us construct the self-similar solution, assuming that the vector h, is independent of the 9 
coordinate. The components of the vector w,, = h, + v,, to satisfy Eqs (1.2), with the extra term 
-dp,ldr added to the right-hand side of the first equation. Assume the tangential load at the 
free boundary in the form T, = 0, T, = zr (this load may be caused by wind with a velocity field 
U, having the components U, = 0, r/, = +d(l z I rl(c,p,)) according to (1.3)). We will represent 
the solution of the problem in the form 

W ,O = rF(s), we0 = rG(s), wzo = 0, wzl = H(s), s =2/E 

The functions F, G and H are found by solving the boundary-value problem 

F”_F2 _HF’,-G2 -(,j’=o 

G”.-HG’-2FG=& H’+2F=O 

G’(O) = 7, F’(0) = If(O) = F(m) = 0, G(m) = 61 (3.4) 

The system obtained was integrated for w =l and various values of T. The results of the 
calculation are shown in Fig. 3. Curves l-3 are plots of the functions F, Gl = G-o and H/2 
against s for z = 1, and curves 4-6 for z = -1. Note that the parameter z may be positive as well 
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Fm .3. 

as negative, and that for T, = 0 the direction of the peripheral component of the air velocity U, 
is determined by the vector formula (1.3) Unlike the case of a fluid which is at rest at infinity, 
the components of the velocity vector vary non-monotonically with distance from the free 
boundary. The boundary layer thickness increases with w. When IIp I z 141 system (3.4) can be 
linearized, and its asymptotic solution is constructed by explicit formulae 

F(s) = -z@Ksin(sJ;;;+ SC/ 4)exp(-&) c 0(z2) 

G(s)=w+z~sin(s~-1~/4)exp(-sJZ;)+0(2~) (T--30) 

We will give the principal terms of the asymptotic form of system (3.4) for high values of the 
angular velocity and z = O(1) 

F = -T%-~ cos(qm - n / 4) exp(-qm) + O(1 I a) 

*=2(&g, q=$ 
(35) 

(a-+=) 

The expression for G is obtained from (3.5) by replacing cos by -sin. 
System (3.4) was integrated numerically for T = 0 and a specified radial component of the 

tangential load P’(0) = h. As in the case considered, the velocity vector oscillates as the 
distance from the boundary increases. For small values of h the asymptotic form of the solution 
is obtained from (3.5) by replacing F, q, T*‘~ and Q by -F, s, h and 2, respectively. 

This research was supported financially by the Russian Fund for Fundamental Research (93- 
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